Skip to content
Home » Scientists develop 3D processors to enhance wireless data transmission

Scientists develop 3D processors to enhance wireless data transmission

Scientists at the University of Florida have pioneered a method for using semiconductor technology to manufacture processors that significantly enhance the efficiency of transmitting vast amounts of data across the globe. The innovation, featured on the current cover of the journal Nature Electronics, is poised to transform the landscape of at a time when advances in AI are dramatically increasing demand.

Traditionally, wireless communication has relied on planar processors, which, while effective, are limited by their two-dimensional structure to operate within a limited portion of electromagnetic spectrum. The UF-designed approach leverages the power of semiconductor technology to propel wireless communication into a new dimension—quite literally.

Researchers have successfully transitioned from planar to three-dimensional processors, ushering in a new era of compactness and efficiency in data transmission.

Roozbeh Tabrizian, Ph.D., an associate professor in UF's Department of Electrical and Computer , whose team developed the three-dimensional processor, said it marks a pivotal moment in the of wireless communication as the world becomes increasingly reliant on seamless connectivity and data exchange.

“The ability to transmit data more efficiently and reliably will open doors to new possibilities, fueling advancements in areas such as , remote health care, and augmented reality,” he said.

Currently, data in our cellphones and tablets are converted into that propagate back and forth among billions of users. Much like highway design and traffic lights ensure traffic flows efficiently through a city, filters, or spectral processors, move the data across different frequencies.

“A city's infrastructure can only handle a certain level of traffic, and if you keep increasing the volume of cars, you have a problem,” Tabrizian said. “We're starting to reach the maximum amount of data we can move efficiently. The planar structure of processors is no longer practical as they limit us to a very limited span of frequencies.”

The schematic illustration highlights the operation of ferroelectric-gate fin spectral processor where the aggregated signal (depicted by the white light) is decomposed to constituent bands at different frequencies (depicted by different electrode colors). Credit: Roozbeh Tabrizian

With the advent of AI and , the increased demand will require a lot more traffic lights in the form of filters at numerous different frequencies to move the data to where it is intended.

“Think of it like lights on the road and in the air,” Tabrizian said. “It becomes a mess. One chip manufactured for just one frequency doesn't make sense anymore.”

Tabrizian and his colleagues at the Herbert Wertheim College of Engineering use CMOS technology, or complementary metal-oxide- process, to build the three-dimensional nanomechanical resonator.

“By harnessing the strengths of semiconductor technologies in integration, routing and packaging, we can integrate different frequency-dependent processors on the same chip,” Tabrizian said. “That's a huge benefit.”

Source: University of Florida